Spectral logging in skarn systems – making a difficult task easy

Adrian Fabris, Georgina Gordon

Geological Survey of South Australia

AGCC, 15th October 2018
Pyroxene skarn
Garnet skarn
Retrogressed garnet-pyroxene skarn

Spectral mineral summary

TIR – GHDD3

Depth

725m

902m

Retrogressed garnet-pyroxene skarn
Garnet skarn
Garnet-pyroxene skarn
Pyroxene skarn

OXIDE
SULPHATE
CARBONATE
OTHER-MGOH
SERPENTINE
AMPHIBOLE
DARK-MICA
CHLORITE
SMECTITE
WHITE-MICA
KAOLIN
PYROXENE
GARNET
PLAGIOCLAS
K-FELDSPAR
SLICA
1. Skarn systems

2. Geological background

3. Improved geological understanding enabled by spectral data
- Mapping prograde v retrograde mineralogy critical for understanding extent of the system and vectoring to potential ore.
• Need to know your mineralogy and mineral compositions, which is not always that easy visually
• Garnet:pyroxene used as a proximity vector

Skarn mineralogy

- Garnet
- Pyroxene
- Olivine (Mg-rich)
- Amphibole
- Epidote
- Plagioclase
- K Feldspar
- Chlorite
- Mica
- Talc (Mg-rich)
- Serpentine (Mg-rich)
- Prehnite
- Carbonate
- others

Pyroxene-K Feldspar-amphibole-chlorite-talc-carbonate, GHDD1
Key observations

1. Skarn mineralogy – characterize type of skarn and likely commodity
2. Skarn zonation - garnet:pyroxene ratio
3. Skarn zonation - map prograde vs retrograde mineralogy

• Hyperspectral instruments provide a robust and consistent method of measuring these.
Regional Geology

- Cover: 400-800m Mesoproterozoic to Recent
- Host – Wallaroo Gr (~1760Ma) within NW-trending grabens (gravity high)
- Cu-Au-Fe skarn style mineralisation age equivalent to Olympic Dam (Sm-Nd - Reid et al., 2011)

<table>
<thead>
<tr>
<th>Prospect</th>
<th>Intersections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundhog</td>
<td>159 m @ 0.47 % Cu, 0.12 g/t Au, 5.3 g/t Ag, 0.48% Zn</td>
</tr>
<tr>
<td>Prairie Dog</td>
<td>99 m @ 0.24% Cu</td>
</tr>
<tr>
<td>Woodchuck</td>
<td>70 m @ 0.41 % Cu</td>
</tr>
</tbody>
</table>

From Swain et al. 2007
Punt Hill – alteration & mineralisation

- Garnet-skarn, ~900 m, GHDD2
- Garnet-skarn, ~928 m, GHDD1
- Pyroxene-skarn, GHDD1

Amphibole-pyroxene-sulfide-fluorite-skarn, 952 m, GHDD1
Punt Hill study

- 39 spectrally logged drillholes (~3000 m of skarn) – HyLogger™ - 3
- VSWIR (380nm-2500nm)
- TIR (6000nm – 14,500nm)
- 17000 spectral measurements after rescaling
1. Characterise skarn mineralogy

- Garnet compositions are primarily andradite with lesser grossular garnet. Pyroxene species are dominated by diopside and lesser augite and hedenbergite.
1. Characterise skarn mineralogy

- Retrograde minerals identified spectrally include chlorite, talc, amphibole (hornblende/?hastingsite), K-feldspar, white mica (muscovite and illite), carbonate (calcite and siderite), epidote, barite and hematite. There is only minor serpentine, rare magnetite (few holes only) and no known pyrrhotite or olivine.

= Oxidised Cu skarn
2. Map garnet to pyroxene ratio

- Where are the causative intrusions?

Proximal

- Gt>Pyx
- Gt=Pyx
- Pyx>Gt

Distal

WDDD1
Mineral summary - TIR
780m

WDDD2
Mineral summary - TIR
760m
980m
2. Map garnet to pyroxene ratio

<table>
<thead>
<tr>
<th>Prospect</th>
<th>Drillhole</th>
<th>Garnet:pyroxene*</th>
<th>Vector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundhog</td>
<td>GHDD7</td>
<td>Gar>>pyx (5.30)</td>
<td>High temperature fluid source from south</td>
</tr>
<tr>
<td></td>
<td>GHDD5</td>
<td>Gar>>pyx (4.42)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHDD4</td>
<td>Gar>pyx (4.06)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHDD3</td>
<td>Gar>>pyx (4.04)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHDD6</td>
<td>Gar>pyx (2.82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHDD1</td>
<td>Gar>pyx (2.18)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GHDD2</td>
<td>Gar ≈ pyx (1.07)</td>
<td></td>
</tr>
<tr>
<td>Woodchuck</td>
<td>WDD1</td>
<td>Gar>pyx</td>
<td>High temperature fluid source from southwest</td>
</tr>
<tr>
<td></td>
<td>WDD2</td>
<td>Pyx>gar</td>
<td></td>
</tr>
<tr>
<td>Whistle Pig</td>
<td>WPDD1</td>
<td>Gar>pyx</td>
<td>High temperature fluid source from southeast</td>
</tr>
<tr>
<td></td>
<td>WPDD2</td>
<td>Gar>pyx</td>
<td></td>
</tr>
<tr>
<td>Prairie Dog</td>
<td>PDDD1</td>
<td>Gar>pyx</td>
<td>High temperature fluid source from southwest</td>
</tr>
<tr>
<td></td>
<td>PDDD2</td>
<td>Gar = pyx</td>
<td></td>
</tr>
<tr>
<td>Hoary</td>
<td>HODD1</td>
<td>No garnet or pyroxene</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HODD3</td>
<td>Gar>pyx</td>
<td>High temperature fluid source from east</td>
</tr>
</tbody>
</table>

*Measured ratios indicated in brackets for the GHDD series of drillholes were derived using “The Spectral Assistant.”
3. Map prograde vs retrograde

- Block model with interpolation of prograde and retrograde zones
Relationship to Cu

- Interpolated geochemistry on alteration shells of prograde- and retrograde-dominated zones
- Clipped to drillhole envelope
Summary

• Skarn systems involve complex mineralogy that is difficult to recognise and understand by visual observation only.

• Spectral mineralogy provides a consistent and accurate method of recognizing key minerals, and these can be used to
 • Characterise mineralogy of a skarn
 • Map zonation patterns – towards causative intrusion and mineralization

• Hyperspectral scanning of drill core makes a difficult task easy.
Contacts

Adrian Fabris, Senior Geologist

Department for Energy and Mining
11 Waymouth Street
Adelaide, South Australia 5000
GPO Box 320
Adelaide, South Australia 5001
T: +61 8 8429 2556
E: demreception@sa.gov.au
Disclaimer

The information contained in this presentation has been compiled by the Department for Energy and Mining (DEM) and originates from a variety of sources. Although all reasonable care has been taken in the preparation and compilation of the information, it has been provided in good faith for general information only and does not purport to be professional advice. No warranty, express or implied, is given as to the completeness, correctness, accuracy, reliability or currency of the materials.

DEM and the Crown in the right of the State of South Australia does not accept responsibility for and will not be held liable to any recipient of the information for any loss or damage however caused (including negligence) which may be directly or indirectly suffered as a consequence of use of these materials. DEM reserves the right to update, amend or supplement the information from time to time at its discretion.