The diverse origins of breccias within the Gawler Range Volcanics:

Lithological characteristics, formation processes and implications for mineral prospectivity

Mario Werner
Geological Survey of South Australia

With special thanks to Ken Cross
Gawler Range Volcanics
Breccias & coarse ‘fragmentites’

- Minor lithology but important for unravelling magmato-tectonic evolution of the GRV
- Potential hydrothermal fluid pathways and mineral deposit hosts
Gawler Range Volcanics

- Occupy central part of Gawler Craton
- Overlie discordantly Archean to Paleoproterozoic rocks
- Coeval with Hiltaba Suite granites
- c. 1590 Ma tectonothermal event
- Gawler SLIP
Gawler Range Volcanics

- Magmatism associated with major mineralisation event
- SA’s IOCG belt at eastern margin
- Operating mines at Olympic Dam and Prominent Hill
- Au and Ag-Pb-Zn deposits at western and southern margin
- Breccias play an important role in a number of these deposits
Gawler Range Volcanics

- GSSA undertook major collaborative drilling program (MSDP) along southern GRV margin
- Characterisation and understanding of mineral systems associated with the GRV-HS event
- Accompanied by mapping project
Study Area: Southern GRV margin
GRV architecture & breccia occurrences

- Gently N-dipping succession of mainly coherent felsic volcanics (subaerially erupted lavas)
- Southern GRV margin strongly faulted (syn-magmatic)
- Hiltaba Suite granite intrusions (early/late; sub/intra GRV)
GRV architecture & breccia occurrences

- Gently N-dipping succession of mainly coherent felsic volcanics (subaerially erupted lavas)
- Southern GRV margin strongly faulted (syn-magmatic)
- Hiltaba Suite granite intrusions (early/late; sub/intra GRV)
• Stratiform breccias: autoclastic - pyroclastic - sedimentary - (tectonic)
• Steeply oriented breccias: tectonic – dyke/vent/pipe (“intrusive”)
GRV architecture & breccia occurrences

- Stratiform breccias: autoclastic - pyroclastic - sedimentary - (tectonic)
- Steeply oriented breccias: tectonic – dyke/vent/pipe (“ intrusive”)
Autoclastic & volcanogenic sedimentary

Hiltaba area

Mount Friday Formation

Yardea Dacite
(Pondanna Dacite Mb.)

Eucarro Rhyolite

Paney Rhyolite

Mt Friday Fm.

fluvially reworked volcaniclastic deposits; hydrothermal alteration

fractured flow-banded lava flow top

autobreccia carapace at top of lava flow
Autoclastic & volcanogenic sedimentary rocks

Hiltaba area

Drillhole MSDP07

~85 m volcanogenic sedimentary rocks

Matrix-supported breccias
Conglomerates and mudstones
Mudstone intraclasts
Soft-sediment deformation-mobilisation

Water-lain debris/mud & hyperconcentrated flows, minor mud suspension settling
Autoclastic & volcanogenic sedimentary

Hiltaba area

Drillhole MSDP05

~95 m extrusive-coherent & autoclastic-peperitic rhyolite,
minor volcanogenic-sedimentary rocks

autobreccia

Eucarro Rhyolite

clastic dykes in fractured rhyolite

sedimentary breccias

laminated mudstones
Autoclastic & volcanogenic sedimentary

Geochemical anomalies due to hydrothermal fluid flow
Autoclastic & volcanogenic sedimentary

Hiltaba area

Drillhole MSDP05

~95 m autoclastic-peperitic and coherent rhyolite, minor volcanogenic-sedimentary

Yardea Dacite (Pondanna Dacite Mb.)

bubble wall glass shards

pyroclastic components \rightarrow explosive volcanism in proximity

pumice fragments
Pyroclastic flow deposits

Mount Double Ignimbrite

~40 m of flow-banded, densely welded rheoignimbrite, partly rich in rhyolitic lithic and pumice clasts, top with alternating crystal-rich/poor ash tuffs

Proximal pyroclastic deposits - dense welding – no hydrothermal fluid flow
• Stratiform breccias: autoclastic - pyroclastic - sedimentary - (tectonic)
• Steeply oriented breccias: tectonic - vent/pipe ("intrusive")
Pyroclastic, vent-pipe & ‘intrusive’ breccias

Menninnie Dam Ignimbrite & Hydroexplosive Volcanic Centre

Rhyolite intruded steep fracture zone, groundwater interaction – diatreme formation

Sub-paleolandsurface network of polymict breccias and intrusive rhyolite: feeder zone tectonic – peperitic – intrusive breccias & near-surface volcanic vent breccias

Phreatic-phreatomagmatic explosions deposited pyroclastic breccias onto paleo-landsurface proximal to volcanic vent

Blanketed by Menninnie Dam Ignimbrite sheet

Parts of breccias show hydrothermal Pb-Zn-Ag mineralisation

Menninnie Dam Ignimbrite
extrusive rhyolite
polymictic to rhyolite/pumice breccias
1590 Ma paleo-landsurfe
fiamme-bearing vent breccias
tectonic-epistemic intrusive breccias

‘Intrusive’ breccias (vent-pipe?)

Paney area

Drillhole MSDP08 - Black Eagle Rock

Massive to bedded volcaniclastics & intrusive rhyolite, intersected ~170 m below GRV paleo-landsurface

Massive to bedded volcaniclastics & intrusive rhyolite, intersected ~170 m below GRV paleo-landsurface

bedded volcaniclastics

disseminated pyrite
GRV architecture & breccia occurrences

- Stratiform breccias: autoclastic - pyroclastic - sedimentary - (tectonic)
- Steeply oriented breccias: tectonic - vent/pipe (“intrusive”)
Tectonic breccias

Paney: Black Eagle Rock Fault Zone
Tectonic breccias

Paney: Black Eagle Rock Fault Zone
Tectonic breccias

Paney area: Black Eagle Rock Fault Zone: MSDP08 & 09

massive monomict dacite breccias; range from crackle-mosaic breccias to matrix-supported chaotic breccias and clast-poor cataclasites

sericite – chlorite – epidote - calcite alteration
Tectonic - hydrothermal breccias

Mount Ive area: The other “Olympic Dam”?
Tectonic - hydrothermal breccias

Mount Ive area: The other “Olympic Dam”? Hematite breccias
Summary

- The shown breccias document autoclastic, pyroclastic, sedimentary and tectonic fragmentation and transportation processes in the formation of the GRV.

- The breccias facilitated horizontal and vertical hydrothermal fluid flow as evidenced in the alterations.

- Dense welding of pyroclastic deposits seems to inhibit significant fluid flow.
Contacts

Mario Werner

Department for Energy and Mining
11 Waymouth Street
Adelaide, South Australia 5000
GPO Box 320
Adelaide, South Australia 5001
T: +61 8 8429 2548
E: mario.werner@sa.gov.au
Disclaimer

The information contained in this presentation has been compiled by the Department for Energy and Mining (DEM) and originates from a variety of sources. Although all reasonable care has been taken in the preparation and compilation of the information, it has been provided in good faith for general information only and does not purport to be professional advice. No warranty, express or implied, is given as to the completeness, correctness, accuracy, reliability or currency of the materials.

DEM and the Crown in the right of the State of South Australia does not accept responsibility for and will not be held liable to any recipient of the information for any loss or damage however caused (including negligence) which may be directly or indirectly suffered as a consequence of use of these materials. DEM reserves the right to update, amend or supplement the information from time to time at its discretion.